​
​
Sign In
  • Support FanGraphs
    FanGraphs Membership
    FanGraphs Shirts
    FanGraphs Mugs
    Gift a Membership
    Donate to FanGraphs
  • Fantasy
    Fantasy Tools
    Fantasy Player Rater
    Auction Calculator
    Ottoneu Fantasy Baseball
    Signup, FAQ, Blog Posts
  • Blogs
    Blog Roll

    FanGraphs
      Podcasts: Effectively Wild

      FanGraphs Prospects

      RotoGraphs
        Podcasts: The Sleeper and The Bust | Field of Streams | Beat the Shift

        Community Research

          Archived Blogs: The Hardball Times | NotGraphs | TechGraphs | FanGraphs+
          Archived THT: THT Live | Dispatch | Fantasy | ShysterBall
          Archived Podcasts: FanGraphs Audio | Chin Music | UMP: The Untitled McDongenhagen Project | Stealing Home | Doing It For Bartolo | OttoGraphs |
        • Projections
          2025 Pre-Season Projections
          ZiPS, ZiPS DC
          Steamer
          Depth Charts
          ATC
          THE BAT, THE BAT X
          OOPSY
          2025 600 PA / 200 IP Projections
          Steamer600, Steamer600 (Update)
          2025 Updated In-Season Projections
          ZiPS (RoS), ZiPS (Update), ZiPS DC (RoS)
          Steamer (RoS), Steamer (Update)
          Depth Charts (RoS)
          ATC DC (RoS)
          THE BAT (RoS), THE BAT X (RoS)
          OOPSY DC (RoS)
          3-Year Projections
          ZiPS 2026, ZiPS 2027
          On-Pace Leaders
          Every Game Played, Games Played %
          Cy Young Award Projections

          Auction Calculator
        • Scores
          Today
          Live Scoreboard, Probable Pitchers
          Live Daily Leaderboards
          Win Probability & Box Scores
          2025, 2024, 2023, 2022, 2021, 2020, 2019
          AL Games
          NL Games
        • Standings
          2025 Projected Standings
          2025 Playoff Odds, Playoff Odds Graphs
          2025 ZiPS Postseason Game-By-Game Odds
          AL East
          AL Central
          AL West
          NL East
          NL Central
          NL West
        • Leaders
          Postseason Leaders
          Batting: 2025, (LDS), (WCS), Career
          Pitching: 2025, (LDS), (WCS), Career

          Major League Leaders
          Batting: 2025, 2024, 2023, 2022, 2021, Career
          Pitching: 2025, 2024, 2023, 2022, 2021, Career
          Fielding: 2025, 2024, 2023, 2022, 2021, Career
          Major League Leaders - Rank
          Batting: Ranking Grid, Compare Players, Compare Stats
          Pitching: Ranking Grid, Compare Players, Compare Stats
          Splits Leaderboards
          Pitch-Type Splits Leaderboards
          Season Stat Grid

          Spring Training Leaders
          Batting: 2025, 2024, 2023
          Pitching: 2025, 2024, 2023

          KBO Leaders
          Batting, Pitching
          NPB Leaders
          Batting, Pitching

          Minor League Leaders
          AAA: International League, Pacific Coast League
          AA: Eastern League, Southern League, Texas League
          A+: Midwest League, South Atlantic League, Northwest League
          A: California League, Carolina League, Florida State League
          CPX: Arizona, Florida
          R: Dominican Summer League
          College Leaders
          Batting, Pitching

          WAR Tools
          Combined WAR Leaderboards
          WAR Graphs
          WPA Tools
          WPA Inquirer
          Rookie Leaders
          Batters 2025, Pitchers 2025
          Splits Leaders
          Batters: vs L, vs R, Home, Away
          Pitchers: vs L, vs R, Home, Away
        • Teams
          Team Batting Stats
          2025, 2024, 2023, 2022, 2021, 2020
          Team Pitching Stats
          2025, 2024, 2023, 2022, 2021, 2020
          Team WAR Totals (RoS)
          AL East
          Blue Jays  |  DC
          Orioles  |  DC
          Rays  |  DC
          Red Sox  |  DC
          Yankees  |  DC
          AL Central
          Guardians  |  DC
          Royals  |  DC
          Tigers  |  DC
          Twins  |  DC
          White Sox  |  DC
          AL West
          Angels  |  DC
          Astros  |  DC
          Athletics  |  DC
          Mariners  |  DC
          Rangers  |  DC
          NL East
          Braves  |  DC
          Marlins  |  DC
          Mets  |  DC
          Nationals  |  DC
          Phillies  |  DC
          NL Central
          Brewers  |  DC
          Cardinals  |  DC
          Cubs  |  DC
          Pirates  |  DC
          Reds  |  DC
          NL West
          D-backs  |  DC
          Dodgers  |  DC
          Giants  |  DC
          Padres  |  DC
          Rockies  |  DC
          Positional Depth Charts
          Batters: C, 1B, 2B, SS, 3B, LF, CF, RF, DH
          Pitchers: SP, RP
        • RosterResource
          Current Depth Charts
          AL East
          Blue Jays
          Orioles
          Rays
          Red Sox
          Yankees
          AL Central
          Guardians
          Royals
          Tigers
          Twins
          White Sox
          AL West
          Angels
          Astros
          Athletics
          Mariners
          Rangers
          NL East
          Braves
          Marlins
          Mets
          Nationals
          Phillies
          NL Central
          Brewers
          Cardinals
          Cubs
          Pirates
          Reds
          NL West
          D-backs
          Dodgers
          Giants
          Padres
          Rockies
          In-Season Tools
          2025 Closer Depth Chart
          2025 Injury Report
          2025 Payroll Pages
          2025 Transaction Tracker
          2025 Schedule Grid
          2025 Probables Grid
          2025 Lineup Tracker
          2025 Minor League Power Rankings
          Offseason Tools
          2026 Free Agent Tracker
          2025 Offseason Tracker
          2025 Opening Day Tracker
        • Prospects
          Prospects Home
          The Board
          The Board: Scouting + Stats!
          How To Use The Board: A Tutorial
          Farm System Rankings

          Top Prospects List
          20252024
          AL
          BALCHWATH
          BOSCLEHOU
          NYYDETLAA
          TBRKCRSEA
          TORMINTEX
          NL
          ATLCHCARI
          MIACINCOL
          NYMMILLAD
          PHIPITSDP
          WSNSTLSFG
          2025 Preseason Top 100
        • Glossary
          Library
          Batting Stats
          wOBA, wRC+, ISO, K% & BB%, more...
          Pitching Stats
          FIP, xFIP, BABIP, K/9 & BB/9, more...
          Defensive Stats
          UZR Primer, DRS, FSR, TZ & TZL, more...
          More
          WAR, UBR Primer, WPA, LI, Clutch
          Guts!
          Seasonal Constants
          Park Factors
          Park Factors by Handedness
        • Sign In
        • Intro
        • Features
        • Offense
          • Complete List (Offense)
          • OBP
          • OPS and OPS+
          • wOBA
          • wRC and wRC+
          • wRAA
          • Off
          • BsR
          • UBR
          • wSB
          • wGDP
          • BABIP
          • ISO
          • HR/FB
          • Spd
          • Pull%/Cent%/Oppo%
          • Soft%/Med%/Hard%
          • GB%, LD%, FB%
          • K% and BB%
          • Plate Discipline (O-Swing%, Z-Swing%, etc.)
          • Pitch Type Linear Weights
          • Pace
        • Defense
          • Overview
          • Def
          • UZR
          • DRS
          • Defensive Runs Saved – 2020 Update
          • Inside Edge Fielding
          • Catcher Defense
          • FSR
          • RZR
          • TZ / TZL
        • Pitching
          • Complete List (Pitching)
          • PitchingBot Pitch Modeling Primer
          • Stuff+, Location+, and Pitching+ Primer
          • ERA
          • WHIP
          • FIP
          • xFIP
          • SIERA
          • Strikeout and Walk Rates
          • Pull%/Cent%/Oppo%
          • Soft%/Med%/Hard%
          • GB%, LD%, FB%
          • BABIP
          • HR/FB
          • LOB%
          • Pitch Type Linear Weights
          • SD / MD
          • ERA- / FIP- / xFIP-
          • Plate Discipline (O-Swing%, Z-Swing%, etc.)
          • Pace
          • PITCHF/x
            • What is PITCHF/x?
            • Pitch Type Abbreviations & Classifications
            • Heat Maps
            • Common Mistakes
            • PITCHf/x Resources
        • WE/RE/LI
          • RE24
          • Win Expectancy
          • WPA
          • LI
          • WPA/LI
          • Clutch
        • Principles
          • DIPS
          • Regression toward the Mean
          • Replacement Level
          • Sample Size
          • Splits
          • Projection Systems
          • Linear Weights
          • Counting vs. Rate Statistics
          • Park Factors
          • Park Factors – 5 Year Regressed
          • Positional Adjustment
          • Aging Curve
          • League Equivalencies
          • Pythagorean Win-Loss
          • Luck
        • WAR
          • What is WAR?
          • WAR for Position Players
          • WAR for Pitchers
          • FDP
          • fWAR, rWAR, and WARP
          • WAR Misconceptions
        • Business

        Archive for Fundamentals

        Interpreting Playoff Odds and Projected Standings

        by Neil Weinberg
        March 6, 2015

        As you might have noticed, our playoff odds and projected standings are now up and running for the 2015 season. If you’re a regular FanGraphs reader, or intend to be this year, you’re going to see a decent amount about the various numerical expectations we post on the site. While these odds and standings are a lot of fun and a great tool for taking stock of the league, it’s also pretty easy to misunderstand or use them improperly.

        Before I run through the proper way to read the odds and standings, I want to provide a brief overview of how we arrive at the numbers you see on the site.

        Our player projections are based on the FanGraphs Depth Charts which are generated by giving equal weight to Steamer and ZiPS (two projection systems) and then manually estimating playing time. Then based on the depth charts, we simulate the season 10,000 times and report the results as playoff odds and projected standings. We also host a Season to Date model and Coin Flip model which project the season based on the current year’s stats (instead of projections) or a 50/50 chance at winning each game, respectively.

        Read the rest of this entry »


        The Beginners Guide to the Positional Adjustment

        by Neil Weinberg
        February 27, 2015

        Getting newcomers on board with Wins Above Replacement has a number of challenges, but the way we measure and evaluate defense is typically one of the biggest sticking points. Getting an open-minded person to believe in wOBA instead of average and RBI isn’t that difficult. Getting someone to accept that there’s more to base running than the number of stolen bases is pretty easy. Convincing them that it’s useful to compare players to replacement level is a bit harder, but nothing really compares to the questions people have about defense.

        There’s good reason for this. Again, a thoughtful person can see the flaws in using errors or fielding percentage, but it’s harder to sell the merits of runs saved metrics for a number of reasons. If you want a little more information on how we measure defense and why we do it that way, check out our beginner’s guide to measuring defense. Today, we’re going to consider a corollary to the actual measurement of defense which is the positional adjustment.

        Read the rest of this entry »


        Stats to Avoid: Batting Average

        by Neil Weinberg
        February 20, 2015

        Batting average is the most recognizable statistic in the game. It might be the most famous statistic in sports and it’s probably up there with Gross Domestic Product (GDP) among the most popular statistics about anything anywhere on the planet. Even people who don’t like or watch baseball understand what batting average means. Just like how you know a singer is famous because your mother knows who they are, you know batting average is huge because you never have to explain it to anyone.

        Which is why it’s so difficult to remove it from our vernacular. Batting average is built into the language of the sport, but it’s simply not a useful statistic and if you want to analyze a player properly, it’s something you don’t want to pay close attention to at all.

        Read the rest of this entry »


        The Beginner’s Guide to Replacement Level

        by Neil Weinberg
        February 13, 2015

        Like any good acronym, the letters in WAR each stand for something. The “W” stands for wins, which is something with which we’re all pretty familiar. The “A” stands for above, which is just an adjoining word, but the “R” stands for replacement which is a place where newcomers sometimes get lost. What is replacement level, why does it matter, and how do you calculate it? If WAR compares players to replacement level, to understand WAR we need to understand R.

        Let’s start from the beginning. Replacement level is simply the level of production you could get from a player that would cost you nothing but the league minimum salary to acquire. Minor league free agents, quad-A players, you get the idea. The concept is pretty tidy. These are the players that are freely available and if five of your MLB level players came down with the flu, you could go out and acquire replacement level players without really giving up anything you value other than their union mandated payday.

        In other words, if you had no one on your roster on April 1st and just needed to populate a team, you’re generally signing replacement level players.

        Read the rest of this entry »


        The Beginner’s Guide to Understanding Trade Value

        by Neil Weinberg
        January 23, 2015

        If you’re not someone who comes up with trade proposals, you’re someone who reacts to trade proposals. It’s one of the great baseball fan parlor games. They’re everywhere. They populate our chats, they dominate Twitter, and they even sneak into real live interpersonal communication. Would the Nationals trade Strasburg? What could they get? Who would they want? These are all very interesting questions, and while most trade ideas disappear into the ether, plenty do come to fruition.

        We talk a lot about trade value on FanGraphs because a lot of our writers care about the roster construction aspect of the game. Certainly we cover what happens between the lines, but there’s a lot of interest among our readers regarding how those players happened to wind up on the teams in question.

        Every summer, Dave Cameron runs a trade value series where he ranks players based on his reading of the baseball landscape. Jonah Keri has a similar series at Grantland every winter. This is a topic that generates lots of interest, so this post is going to lay out the variables you should consider when pondering what a player is worth to the rest of the league.

        Read the rest of this entry »


        The Beginner’s Guide To Understanding Park Factors

        by Neil Weinberg
        January 16, 2015

        One of the things that makes baseball interesting is that none of the playing fields are the same. In the NHL, NBA, and NFL there are certain things that might make certain stadiums feel different than one another, but the measurements of each are the same. In baseball, the bases are all 90 feet apart and the mound is at regulation length, but the fences vary by distance and height. You can travel to all 30 parks and never see the same same dimensions twice, but that also poses a problem when trying to evaluate the game because there’s an additional variable influencing the outcome of every plate appearance.

        If we want to properly evaluate players and teams we need to have some way of adjusting for the fact that every park is different. More specifically, each park plays differently for reasons beyond the outfield dimensions. If you pitch at Coors Field in an identical manner to identical hitters as you pitch to at AT&T Park, your results will be different due to the ballpark. We want to try to control for this when we create statistics, so we apply something called a park factor to even out the differences.

        These park factors are imperfect for a variety of reasons, but what they’re after is on the money. The parks influence the game and we want to strip that out of our evaluation of individuals.

        How Parks Vary

        It’s not just the dimensions. The dimensions matter, obviously, but deep fences don’t automatically make a pitcher’s park and short porches don’t always favor hitters. In addition to the dimensions, the weather matters, the air density/quality matters, and topology of the surrounding area matters. The ball tends to travel better in warm air and thin air, and the surrounding buildings and ballpark structures can influence how well the ball carries.

        Petco Park, for example, has a marine layer that doesn’t let the ball fly. You probably know that Denver is way above sea level, making the Coors Field air thin and ripe for plenty of carry. Beyond that, the arrangement of the stands can influence how well the ball flies and the average temperature certainly affects the game play.

        So while “big” and “pitcher’s park” are often used synonymously, there is more to it than that.

        The Noble Goal

        If you had the power to do so, you’d want to know how every single plate appearance would play out in all 30 MLB parks. If it turned into a single in the park of interest and then went for a single in 25 other parks, an out in three, and a double in one, you’d have a good sense of the way the parks played. The park that allowed the double would be a hitter’s park and the ones that created outs would be more pitcher friendly. But unfortunately, we don’t have that kind of data.

        We want to know how parks influence each moment of the game, but we simply don’t have granular enough data to really get there. A ball hit at 15 degrees directly over the shortstop while traveling at 93 miles per hour will travel how far and land where? That’s basically what we want to know for every possible angle and velocity, but we just don’t have the data and we don’t have it for every type of weather in every park.

        Instead, we have to settle for approximations.

        Park Factors, As They Are

        There are many different park factors out there. We have some. Baseball-Reference has different ones. Stat Corner has more. Individuals create some. It goes on and on. We use 5-year regressed park factors and you can dive into our method here.

        At the end of whatever process you choose, you wind up with a number that communicates how much more offense is produced in that park than you would expect to be produced in an average one, and when we display them on the site, we cut them in half so that you can more easily apply them to player statistics.

        A league average park factor is set to 100 and a 105 park factor means that park produces run scoring that is 10% higher than average (halved so 110 becomes 105 in 81 games). We also provide park factors for each type of hit and batted ball, and for handedness, although we use the general ones when making park corrections.

        For example, if a player has a .340 wOBA, but their home park is hitter friendly, they we need to adjust their wOBA down as a result. We don’t calculate a wOBA+, but some do. Instead, we jump over to wRC+ for our park adjusted offensive metric. This stat, among other things, applies a park adjustment to the player’s batting line. Stats like ERA- do this as well, and pretty much any time you see a +/- stat, it’s park adjusted.

        And our park factors are applied with the additive method, meaning that we’re essentially adding or subtracting a little production based on how much offense is affected by the park in our estimate, but remember that we only apply half of the full park factor because a player only plays at home for half their games. We assume the rest are played in a pretty average setting.

        What Park Factors Get “Wrong”

        As I said before, park factors aren’t perfect for a variety of reasons. They do a nice job on average, but in specific cases they fail to properly capture the nuances of the game. For example, Target Field is actually a slightly above average park for hitters. It’s on par with Yankee Stadium in fact, despite the much different dimensions. However, if you’re talking specifically about left-handed home run power, Target Field is a desert and Yankee Stadium is an oasis.

        The problem with park factors as they stand right now is that while we’re trying to adjust for the run environment, the run environment is difficult to capture is a single number. Lefties and righties experience the world differently, but so do ground ball/fly ball guys and guys with speed and guys without.

        It’s safe to say that AT&T Park is a bad place to hit and Coors Field is a good place to hit, but parks don’t affect every player evenly and our park factors sort of assume that they do.

        In the future, you could imagine a world in which we could know what the average outcome of a batted ball might be (i.e. the average outcome across all 30 parks of that swing is .25 singles, .15 doubles and so on) so that we can compare the observed outcome to the expected outcome, but we aren’t there yet.

        Where That Leaves Us

        This isn’t to say you should ignore park factors. The park factors we have and use are much better than pretending all 30 parks play evenly, but you have to be aware that in some cases the numbers we use aren’t going to make the right corrections. For example, a right-handed hitter who spends 81 games at PNC Park is going to hit fewer HR than if he played at Great American Ballpark on average, but if it’s a righty who happens to have more power the other way that to his pull side, the PNC park factor is actually going to overcompensate.

        It’s a tricky business and one that requires caution. You really just need to be careful and to look closely if you think something looks funny. The parks play differently and we need to pay attention to that, but we also have a long way to go before our estimates are perfect and we can say for sure exactly how much of a boost or deduction is necessary.


        Which is Better? A Ground Ball Pitcher or a Fly Ball Pitcher

        by Neil Weinberg
        December 12, 2014

        It’s very likely that if you’ve spent any time at all reading sabermetric analysis that you’ve heard some mention of a pitcher’s batted ball profile. You might have seen a reference to a guy being a “ground ball machine” or an “extreme fly ball pitcher” and perhaps you wondered to yourself, “which is better?” Would a pitcher be better off as one or the other?

        In reality, there’s no ideal batted ball distribution for a pitcher, just like there’s no perfect distribution for a hitter. Pitchers would love to never allow line drives and get tons of infield fly balls, but within the realm of possible outcomes, you can be successful as a ground ball pitcher or as a fly ball pitcher. One isn’t better than other, they’re just different.

        Read the rest of this entry »


        Considering High Leverage Performance and Clutch Hitting

        by Neil Weinberg
        December 5, 2014

        Human beings love big moments. We have an innate attraction to crescendos, buzzer beaters, walk-offs, and those scenes in movies when people sprint through airport terminals. It matters to us in a very primal way what transpires when the chips are down. This is why RBI is a popular statistic and why so much attention is paid to stats like batting average with runners in scoring position. We believe that players who perform well in the big moments are the best players. There are probably all kinds of cognitive and psychological biases at play, but I think we can all agree that success in critical situations is more highly valued than success in general. This is as true in life as it is in baseball.

        Yet there is also a lot of evidence that tells us to ignore these performances in baseball, or rather, to treat them just like any other performance. A home run with the game on the line is more important than one in a blow out, but it’s not really a reflection of the player being better or being clutch.

        This is a controversial stance. Sabermetricians have been commenting on the false “clutch” narrative for many years and have received a great deal of push back. The alternative view is that certain players are able to rise to the occasion and that they know how to slow the game down and deliver in critical spots. Rather than taking a hard line on the subject rhetorically, instead I’d like to review a bit of the research done on clutch and provide some important questions to consider regarding clutch performance.

        Read the rest of this entry »


        What Do We Know About Catcher Defense?

        by Neil Weinberg
        November 14, 2014

        We’ve seen some pretty revolutionary baseball research over the two decades, but until about three years ago our public estimations of catcher defense were pretty limited. We had some idea about which catchers were the best at catching base stealers, but blocking, framing, game calling, and the other nuances of the job were relative unknowns. We knew they were there, we could see them at work in individual situations, but we just didn’t have quality, public data to give us a clear pitcher of catcher defense. That’s starting to change, although we’re still a long way from home.

        Over the last couple of seasons, pitch framing has become a popular topic of conversation in the game with teams like the Rays, Pirates, and others seemingly targeting quality framers. We have had new metrics and seen lots of articles considering the merits of those catchers who can steal extra strikes. It’s hard to say if it’s permeated the baseball world, or just the advanced metrics/blogger world, but framing is the new “it” asset. We even saw our own Dave Cameron place a high value on catcher defense on his 2014 NL MVP ballot.

        Catcher defense can essentially be divided into five categories: normal fielding, pitch framing, blocking, game calling, and controlling the running game. In no area are we perfect, but there are some areas that we can evaluate better than others. Catcher defense is an evolving area of study and hot topic of conversation. Let’s briefly consider what we do and don’t know about the most indispensable position.*

        Read the rest of this entry »


        Shutdowns, Not Saves: The Logic and the Leaders from 2014

        by Neil Weinberg
        November 7, 2014

        Who led the league in saves in 2014? Hopefully, you don’t know the answer off the top of your head. Saves aren’t a good measure of anything relating to player performance or talent and with so many things you could remember about the 2014 season, you probably don’t want to waste vital brain capacity on a random piece of trivia like who had the most saves.

        The reason saves aren’t very useful is because the rule itself is not designed to provide much information. You can earn a save if you strikeout Miguel Cabrera, Victor Martinez, and J.D. Martinez in a one run game or you can earn a save if you allow five base runners against the bottom of the Padres’ order. You don’t earn a save if you preserve a tie, or if you preserve a lead in the 7th inning. Nearly everything about the rule is arbitrary, which leads you to find arbitrary results.

        But the idea of something like a save is compelling for many people. There is a desire for a statistic that measures the number of a times a reliever comes in and pitches very well in an important spot. We can look at rate stats like ERA, FIP, or xFIP or cumulative numbers like RE24 or WAR, but it’s perfectly fine to want some sort of counting stat that tracks how many times a reliever slammed the door (or didn’t).

        Read the rest of this entry »


        « Previous Page — « Previous entries
        Next entries » — Next Page »

        Updated: Thursday, October 9, 2025 4:21 PM ETUpdated: 10/9/2025 4:21 PM ET
        @fangraphs - Contact Us - Advertise - Terms of Service - Privacy Policy
        sis_logo
        All major league baseball data including pitch type, velocity, batted ball location, and play-by-play data provided by Sports Info Solutions.
        mlb logo
        Major League and Minor League Baseball data provided by Major League Baseball.
        Mitchel Lichtman
        All UZR (ultimate zone rating) calculations are provided courtesy of Mitchel Lichtman.
        TangoTiger.com
        All Win Expectancy, Leverage Index, Run Expectancy, and Fans Scouting Report data licenced from TangoTiger.com
        Retrosheet.org
        Play-by-play data prior to 2002 was obtained free of charge from and is copyrighted by Retrosheet.